Selasa, 23 Juni 2015

Terbongkar, Gudang Pengolahan Sirip Hiu di Lombok


MATARAM, KOMPAS.com — Petugas gabungan dari Kementerian Kelautan dan Perikanan (KKP) dan Dit Polair Polda Nusa Tenggara Barat (NTB) membongkar gudang pengolahan dan penyimpanan sirip hiu yang ada di Lombok Timur, NTB.

Menurut Kepala Satuan Kerja Pengawasan Sumber Daya Kelautan Perikanan Labuhan Lombok, Mubarak, Selasa (23/6/2015), terbongkarnya gudang pengolahan dan penyimpanan hiu dan pari manta di Lombok Timur itu berawal dari munculnya laporan masyarakat.

Warga menyebutkan bahwa di daerah ini terdapat gudang penyimpanan dan pengolahan hiu dan pari. Petugas akhirnya menangkap pelaku yang saat itu tertangkap tangan akan melakukan transaksi.

Dalam operasi tangkap tangan tersebut, petugas menangkap dua pelaku yang selama ini menjadi pengepul hiu dan pari manta. "Setelah kita periksa dan cek kebenaran, apakah ini insang pari manta dan sirip hiu paus yang dilindungi, kami simpulkan bahwa ini benar pari manta dan hiu paus. Kami mengamankan barang bukti bersama pelaku atau pemiliknya," kata Mubarak.

Mubarak mengatakan, operasi tangkap tangan dilakukan di dua lokasi berbeda, yaitu di Tempat Pelelangan Ikan (TPI) Tanjung Luar serta gudang pengolahan dan penyimpanan hiu dan pari manta di Rumbuk, Sakra, Lombok Timur.

Dalam operasi di TPI Tanjung Luar, petugas menemukan tujuh karung tulang pari manta bercampur tulang hiu, serta insang pari manta, dari ukuran yang besar sampai ukuran kecil.

Di tempat kedua, petugas menemukan tulang pari manta dan sirip hiu. "Ada sebanyak sembilan karung ditambah satu set sirip hiu dan daging hiu segar yang kami amankan," kata Mubarak.

Guna penyelidikan lebih lanjut, petugas telah mengamankan dua pemilik sekaligus pengepul berinisial R dan MA. Menurut pengakuan pemilik, praktik ini sudah berlangsung sekitar 15 tahun lalu.

Sirip hiu dan tulang pari manta yang telah terkumpul nantinya akan dikirim ke luar negeri melalui Surabaya. Setiap kilogramnya, pengepul memasang harga Rp 500.000 hingga Rp 1 juta.

Senin, 14 Januari 2013

Pura-Pura Mati, Cara Embrio Hiu Hindari Predator


Jika predator mendekat, embiro hiu ini akan menahan napas, melingkarkan ekor di sekitar tubuh, dan diam. 

Meski hiu lahir lengkap dengan peralatan berburu dan pertahanan diri, mereka tetap ringkih saat masih menjadi embrio. Ukurannya yang cukup kecil menjadikan mereka sebagai santapan lezat ikan yang jauh lebih besar. Tapi studi terbaru menyatakan embrio-embrio ini bisa mendeteksi predator dan punya taktik sendiri untuk menghindarinya, yakni dengan berpura-pura mati.

Setiap makhluk hidup memiliki medan magnet. Dan hiu bisa mendeteksi medan magnet ini menggunakan pori-pori yang disebut ampul Lorenzini. Pori ini terletak di kepala dan di sekitar mata. Studi sebelumnya mempelajari hiu bambu (Scyliorhinus canicula) dan Raja eglanteria -relatif dari hiu- memiliki perilaku sama dalam mengecoh predator.

Namun, peneliti hiu sekaligus mahasiwa program doktor University of Western Australia, Ryan Kempster, memberi penjelasan lebih dalam di jurnal PLoS One yang dirilis, Rabu (9/1). Kempster menguji 11 embrio hiu bambu coklat terhadap medan magnet yang dihasilkan oleh predator. Ternyata jika hiu ini mencapai satu fase pertumbuhan dan diberi rangsangan medan magnet predator, mereka akan menahan napas, melingkarkan ekor di sekitar tubuh, dan diam.

"Jadi sepertinya mereka memberi jubah pada diri sendiri," ujar ahli neuro-ekologi Joseph Sisneros, dari University of Washington di Seattle, Amerika Serikat. "Mereka menutup semua isyarat bau, pergerakan air, dan sinyal elektriknya sendiri." Untuk bisa sampai pada kesimpulan ini tidaklah mudah. Karena Kempster harus melakukan tes medan magnet yang berulang-ulang. "Juga tidak semua hiu yang sama bisa merespon berulang kali," kata Kempster. 



Rabu, 09 Januari 2013

Karang masih bertahan pada kenaikan suhu



Para Peneliti beberapa waktu yang lalu telah berhasil menemukan pola genetis dari hewan karang, sehinga hewn karang mampun bertahan pada peningkatan suhu perairan. 

Penemuan ini memberikan salah satu alternative untuk memprediksi bagai mana karang merespon kenaikan suhu permukaan air laut sebagai dampak dari perubahan iklim global yang terjadi pada beberapa dekade. Informasi tersebut dapat membantu pengelola dalam usaha konservasi dimasa yang akan datang.  
Sebagai contoh  karang Acropora hyacinthus di  Ofu Island, American Samoa, telah terbukti mampu bertahan pada fluktuasi suhu permukaan air laut sampan deign  6 °C. Untuk mengetahui sebab kenapa karang tersebut memiliki data lenting yang kuat, para peneliti melakukan perbandingan aktivitas gen yang pada resisntan terhadap panas dan gen yang sensistive terhadap panas dengan mengukur "transcriptone". Transcriptone merupakan seluruh set molekul RNA termasuk mRNArRNAtRNA, dan RNA lainnya.  Gen - gen tersebut berfungsi sebagai anti oksidan dan protein yang menyebar untuk merespone kenaikan suhu.  

Daniel Barshis seorang  peneliti dari institute of Marine Science at the University of California Santa Cruz menemukan bahwa hampir ratusan karang memiliki kemampuan untuk merubah profile gennya untuk merespon pada kenaikan suhu air yang dipanaskan dalam sebuah tank    menjadi 32.9 °C . Tetapi pada  karang yang resilient terhadap panas, sekitar 60 gen lebih tahan hanya pada temperature 29 sebagai suhu control. Para peneliti berpendapat bahwa profile gen tersebut karang yang mampu bertahan pada level rendah dari perubahan kondisi. 

Karang yang telah terbiasa dengan kondisi terekspose oleh pasang surut dan perubahan suhu memiliki kecenderungan memiliki data resilinesi yang lebih kuat. Saat ini perubahan iklim terjadi dengan begitu cepat, sehingga sangat penting untuk memahami bagaimana organisme dapat merespon perubahan iklim tersebut demikian pendapat Ove Hoegh-Guldberg, seorang ahli biology laut dari Global Change Institute,  Universitas Queensland, Australia. Beliau menambahkan hasil penelitian mengenai respond hewan karang terhadap perubahan suhu perairan sangat berguna. Akan tetapi beliau berpendapat bahwa pada masa yang akan datang kita tidak akan melihat karang tumbuh dengan baik pada kondisi peningkatan suhu perairan 1 - 2 °C. 

Tantangan saat ini adalah bagaimana mengidentifikasi apakah pola gen dipengaruhi oleh species karang yang resilient terhadap suhu dengan maksud untuk lebih memahami proses dan potensi membangun sebuah teori untuk mengidentifikasi lokasi-lokasi di dunia yang memiliki kemampuan bertahan yang lebih baik terhadap pemanasan global. 

Selasa, 11 Desember 2012

A World Without Coral Reefs

IT’S past time to tell the truth about the state of the world’s coral reefs, the nurseries of tropical coastal fish stocks. They have become zombie ecosystems, neither dead nor truly alive in any functional sense, and on a trajectory to collapse within a human generation. There will be remnants here and there, but the global coral reef ecosystem — with its storehouse of biodiversity and fisheries supporting millions of the world’s poor — will cease to be. Overfishing, ocean acidification and pollution are pushing coral reefs into oblivion. Each of those forces alone is fully capable of causing the global collapse of coral reefs; together, they assure it. The scientific evidence for this is compelling and unequivocal, but there seems to be a collective reluctance to accept the logical conclusion — that there is no hope of saving the global coral reef ecosystem. What we hear instead is an airbrushed view of the crisis — a view endorsed by coral reef scientists, amplified by environmentalists and accepted by governments. Coral reefs, like rain forests, are a symbol of biodiversity. And, like rain forests, they are portrayed as existentially threatened — but salvageable. The message is: “There is yet hope.” Indeed, this view is echoed in the “consensus statement” of the just-concluded International Coral Reef Symposium, which called “on all governments to ensure the future of coral reefs.” It was signed by more than 2,000 scientists, officials and conservationists. This is less a conspiracy than a sort of institutional inertia. Governments don’t want to be blamed for disasters on their watch, conservationists apparently value hope over truth, and scientists often don’t see the reefs for the corals. But by persisting in the false belief that coral reefs have a future, we grossly misallocate the funds needed to cope with the fallout from their collapse. Money isn’t spent to study what to do after the reefs are gone — on what sort of ecosystems will replace coral reefs and what opportunities there will be to nudge these into providing people with food and other useful ecosystem products and services. Nor is money spent to preserve some of the genetic resources of coral reefs by transferring them into systems that are not coral reefs. And money isn’t spent to make the economic structural adjustment that communities and industries that depend on coral reefs urgently need. We have focused too much on the state of the reefs rather than the rate of the processes killing them. Overfishing, ocean acidification and pollution have two features in common. First, they are accelerating. They are growing broadly in line with global economic growth, so they can double in size every couple of decades. Second, they have extreme inertia — there is no real prospect of changing their trajectories in less than 20 to 50 years. In short, these forces are unstoppable and irreversible. And it is these two features — acceleration and inertia — that have blindsided us. Overfishing can bring down reefs because fish are one of the key functional groups that hold reefs together. Detailed forensic studies of the global fish catch by Daniel Pauly’s lab at the University of British Columbia confirm that global fishing pressure is still accelerating even as the global fish catch is declining. Overfishing is already damaging reefs worldwide, and it is set to double and double again over the next few decades. Ocean acidification can also bring down reefs because it affects the corals themselves. Corals can make their calcareous skeletons only within a special range of temperature and acidity of the surrounding seawater. But the oceans are acidifying as they absorb increasing amounts of carbon dioxide from the atmosphere. Research led by Ove Hoegh-Guldberg of the University of Queensland shows that corals will be pushed outside their temperature-acidity envelope in the next 20 to 30 years, absent effective international action on emissions. We have less of a handle on pollution. We do know that nutrients, particularly nitrogenous ones, are increasing not only in coastal waters but also in the open ocean. This change is accelerating. And we know that coral reefs just can’t survive in nutrient-rich waters. These conditions only encourage the microbes and jellyfish that will replace coral reefs in coastal waters. We can say, though, with somewhat less certainty than for overfishing or ocean acidification that unstoppable pollution will force reefs beyond their survival envelope by midcentury. This is not a story that gives me any pleasure to tell. But it needs to be told urgently and widely because it will be a disaster for the hundreds of millions of people in poor, tropical countries like Indonesia and the Philippines who depend on coral reefs for food. It will also threaten the tourism industry of rich countries with coral reefs, like the United States, Australia and Japan. Countries like Mexico and Thailand will have both their food security and tourism industries badly damaged. And, almost an afterthought, it will be a tragedy for global conservation as hot spots of biodiversity are destroyed. What we will be left with is an algal-dominated hard ocean bottom, as the remains of the limestone reefs slowly break up, with lots of microbial life soaking up the sun’s energy by photosynthesis, few fish but lots of jellyfish grazing on the microbes. It will be slimy and look a lot like the ecosystems of the Precambrian era, which ended more than 500 million years ago and well before fish evolved. Coral reefs will be the first, but certainly not the last, major ecosystem to succumb to the Anthropocene — the new geological epoch now emerging. That is why we need an enormous reallocation of research, government and environmental effort to understand what has happened so we can respond the next time we face a disaster of this magnitude. It will be no bad thing to learn how to do such ecological engineering now. Roger Bradbury, an ecologist, does research in resource management at Australian National University.

Senin, 08 Agustus 2011

Seagrasses face extinction threat

By Matt Walker Editor, BBC Nature

"I was surprised by the level of threat to many species of seagrass”

Frederick Short Research Professor and Director of SeagrassNet


Seagrasses around the world are disappearing, with some species now threatened with extinction.

The first global survey of individual seagrass species has found that 14% are at risk of going extinct.
More common species are also in decline, meaning both seagrass habitat and diversity is being lost.

Seagrasses provide food and habitat for a variety of ocean species including manatees, sea turtles and fish such as sea horses.

Seagrasses are flowering plants that grow on the ocean floor.

They form vast meadows that flower and seed underwater, having evolved from land-based plants that entered the water millions of years ago.

Seagrasses alone form important marine habitats.

They act as nurseries for young fish and shellfish, and are the primary food for large marine mammals such as manatees and dugongs, as well as reptiles such as some sea turtles.

They also contribute to the health of coral reefs and mangroves, salt marshes and oyster reefs.
It has been known for a while that seagrasses are declining in many parts of the world.

26 of the 72 species of seagrass are declining in number, with 13 increasing. The rest are stable or unknown
Seagrasses provide food for dugongs and manatees, animals said to be the basis for the mermaid myths


The reasons are many, seagrass expert Frederick Short told the BBC.

Professor Short, of the University of Hampshire in Durham, US is the director of SeagrassNet, an international seagrass monitoring program with 114 sites around the world.

For example, seagrasses are gone from the most developed coastlines due to pollution, said Professor Short.

Seagrasses are in decline in the developing world due to sedimentation, caused by runoff from impacted watersheds and deforestation, and being overloaded with nutrients flowing into the sea from sewage and agricultural runoff.

Seagrasses are also being directly damaged by the dredging of seafloors."But there has never been a review of individual species status," said Professor Short.

So he and an international team of experts convened three workshops to gather all the knowledge about individual seagrasses, and used it to evaluate how at risk each species is. The workshops were hosted by Conservation International, the Global Marine Species Assessment programme and SeagrassNet.

The results are published in the journal Biological Conservation.

"I was surprised by the level of threat to many species of seagrass and to discover that seagrass biodiversity is under greater threat than I believed," he said.

Of the 72 species, his team found that 15 seagrasses should be considered Endangered, Vulnerable or Near Threatened, under criteria laid down by the International Union for Conservation of Nature (IUCN) Red List.

Of those, ten face a significant risk of extinction.
Phyllospadix japonicus is an important habitat-forming grass along the rocky shorelines of China, North and South Korea and Japan. But it has gone from swathes of China's coastline, due to seaweed aquaculture.
Zostera chilensis is known from only two locations on the coast of Chile, and seems to have already disappeared from one.

Of the 57 remaining species, 48 are considered of Least Concern, while sufficient data doesn't exist to make a judgement on the others.

"Many widespread, common seagrass species which are not presently threatened are nonetheless in decline, so we have both an overall loss of habitat and a loss of biodiversity," said Professor Short.

"Seagrasses are both direct food for important species and as they break down within the coastal ecosystem, they are part of a vast food web that provides food to many organisms within the coastal ocean, including many commercially and recreationally important species.

"Unfortunately, being submerged in the ocean they are rarely directly seen except by swimmers or snorkelers."