Mark R. Christie1*, Brian N. Tissot2, Mark A. Albins1, James P. Beets3, Yanli Jia4, Delisse M. Ortiz5, Stephen E. Thompson6, Mark A. Hixon1
1 Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America, 2 School of Earth and Environmental Science, Washington State University, Vancouver, Washington, United States of America, 3 Department of Marine Science, University of Hawaii at Hilo, Hilo, Hawaii, United States of America, 4 International Pacific Research Center, University of Hawaii, Honolulu, Hawaii, United States of America, 5 National Marine Fisheries Service, Highly Migratory Species Management Division, Silver Spring, Maryland, United States of America, 6 Marine Environmental Research, Kailua-Kona, Hawaii, United States of America
Abstract
Acceptance of marine protected areas (MPAs) as fishery and conservation tools has been hampered by lack of direct evidence that MPAs successfully seed unprotected areas with larvae of targeted species. For the first time, we present direct evidence of large-scale population connectivity within an existing and effective network of MPAs. A new parentage analysis identified four parent-offspring pairs from a large, exploited population of the coral-reef fish Zebrasoma flavescens in Hawai'i, revealing larval dispersal distances ranging from 15 to 184 km. In two cases, successful dispersal was from an MPA to unprotected sites. Given high adult abundances, the documentation of any parent-offspring pairs demonstrates that ecologically-relevant larval connectivity between reefs is substantial. All offspring settled at sites to the north of where they were spawned. Satellite altimetry and oceanographic models from relevant time periods indicated a cyclonic eddy that created prevailing northward currents between sites where parents and offspring were found. These findings empirically demonstrate the effectiveness of MPAs as useful conservation and management tools and further highlight the importance of coupling oceanographic, genetic, and ecological data to predict, validate and quantify larval connectivity among marine populations.
Read more: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0015715
Kamis, 12 Mei 2011
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar